Нормальное распределение

Нормальное распределение играет особую роль в теории вероятностей и математической статистике. Разнообразные статистические данные с хорошей степенью точности можно считать реализациями случайной величины, имеющей нормальное распределение. Можно предполагать нормальное распределение у случайной величины, если на её отклонение от некоторого фиксированного значения аддитивно влияет множество различных факторов, причем влияние каждого из них вносит малый вклад в это отклонение, а их действия почти независимы. Кроме того, в силу центральной предельной теоремы распределение целого ряда широко распространенных в статистике функций от случайных величин хорошо аппроксимируется нормальным распределением. Нормальное распределение часто встречается в реальных исследованиях. Оно удобно для компьютерной обработки. Использованию нормального распределения для приближенного описания случайных величин не препятствует то обстоятельство, что эти величины обычно могут принимать значения только из какого-то ограниченного интервала (скажем, размер изделия должен быть больше нуля и меньше километра), а нормальное распределение не сосредоточено целиком ни на каком интервале. Однако, вероятность больших отклонений нормальной случайной величины от среднего значения настолько мала, что ее практически можно считать равной нулю. Кроме того, линейная комбинация любых нормально распределённых величин вновь распределена нормально.

Для исследования «нормальных» данных математической статистикой выработаны эффективные методы. Эти методы непригодны для данных другой природы в том смысле, что выполнить соответствующий расчёт можно, но результат будет неправильным. Поэтому, когда к имеющимся наблюдениям применяются ориентированные на нормальное распределение методы, необходимо выяснить, похоже ли распределение этих наблюдений на нормальное. С полной уверенностью сказать это невозможно, но, по крайней мере, от грубых ошибок такие проверки могут уберечь.

Запись опубликована в рубрике Статистика, Точные науки. Добавьте в закладки постоянную ссылку.